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Logistic Regression

Today’s goal: 
Evaluate the effect of multiple variables on a categorical 
outcome variable 

Outline: 

- Basic theory: extending regression to logistic regression 

- Logistic regression (binary outcome) 

- Poisson regression* (count outcome) 

- Ordered categorical regression* (Likert scales, etc.)



Extending regression
to logistic regression



A quick aside…
Regression with interaction effect: 

Yi = a + b1X1i + b2X2i + b3X1iX2i+ ei 

You can do this with any X! 
Just make sure that your variables are centered 

Centering a factor: 
Assign contrasts that sum to zero 

Centering a continuous X: 
Subtract the mean



A quick aside…
Yi = a + b1X1i + b2X2i + b3X1iX2i+ ei 

Interpretation if X1 is continuous and X2 is binary:  
b3 is the additional effect of X1 in the second group of X2 
b3 is the additional difference between the two groups of 
X2 with each 1 point increase in X1 

Interpretation if both are continuous: 
b3 is the additional effect of X1 with each 1 point increase 
of X2 (and vice versa)



Logistic regression
Linear regression: 

Yi = a + b1X1i + b2X2i + … + bkXki + ei 

What if Y is binary (0 or 1)? 
We can try to predict the probability of Y=1 — P(Y) 
However, this probability is a number between 0 and 1 
For linear regression, we want an unbounded linear Y! 

Can we find some transformation that allows us to do this? 
Yes: P(Y) = 1 / (1+e–U)



Logistic regression

P(Y) = 1 / (1+e–U) 

Conversely: 
U = ln(P(Y)/(1–P(Y))) 

Interpretation: 
P(Y)/(1–P(Y)) is the odds 
of Y 
Therefore, U is the log 
odds, or logit of Y

P(
Y)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

U

-5 -4 -3 -2 -1 0 1 2 3 4 5



Logistic regression

Since U is unbounded, we can treat it as our regression 
outcome: 

Ui = ln(P(Yi)/(1–P(Yi))) = Yi = a + b1X1i + b2X2i + … + bkXki + 
ei 

We can always transform it back to P(Yi) if we want to: 
P(Yi) = 1 / (1+e–(a + b1X1i + b2X2i + … + bkXki + ei))



Log-likelihood

How do we assess the fit of a logistic regression? 
We calculate the log-likelihood, which is a type of residual 

Log-likelihood = ∑(Yi*ln(P(Yi)) + (1–Yi)*ln(1–P(Yi))) 
where Yi is the observed value, and P(Yi) is the predicted 
value



Log-likelihood
Log-likelihood = ∑(Yi*ln(P(Yi)) + (1–Yi)*ln(1–P(Yi))) 

If Yi = 1, then this simplifies to ln(P(Yi))  
which is zero when the prediction is correct (P(Yi)=1) but 
gets a large (negative) value if the prediction is incorrect 
(P(Yi) is closer to 0) 

If Yi = 0, then this simplifies to ln(1–P(Yi))  
which is zero when the prediction is correct (P(Yi)=0) but 
gets a large (negative) value if the prediction is incorrect 
(P(Yi) is closer to 1)



Deviance (–2LL)
A more useful measure is deviance (a.k.a. –2LL) 

–2 * log-likelihood 

Difference can be used to compare nested models  

Likelihood ratio: χ2 = –2LLbaseline – –2LLnew 

Chi-square distribution with knew – kbaseline df 

In regression we compared against the mean 
In logistic regression we compare against the majority 
class (either 0 or 1)



Information criteria

Using –2LL to compare non-nested models: 

Akaike Information Criterion (AIC): 
AIC = –2LL + 2k 

Bayesian Information Criterion (BIC): 
BIC = –2LL + 2k*log(N)



R2

We can use –2LL to calculate R2, but there is some 
disagreement on how to do this 

Hosmer and Lemeshow method: 
RL2 = (–2LLbaseline – –2LLnew) / –2LLbaseline 

Cox and Snell method: 
RCS2 = 1 – exp((–2LLnew – –2LLbaseline)/N) 

Nagelkerke method: 
RN2 = RCS2 / (1 –exp(2LLbaseline/N))



Coefficients

In regression, we can test the significance of the b 
coefficients with a t-test (t = b/SEb) 

In logistic regression, this is a z-test 
z = b/SEb (Wald statistic) 

The Wald statistic is prone to inflating type II errors, though 
Better to just do likelihood ratio model comparisons



Coefficients

How to interpret the b coefficients? 
b is the increase in U for each increase of X 
b is the increase in ln(P(Y)/(1–P(Y))) for each increase in X 
eb is the ratio of P(Y)/(1–P(Y)) for each increase in X 
eb is the odds ratio



Coefficients
Odds ratio examples: 

If eb > 1: The odds of Y are eb times as high for each increase 
in X 

E.g. eb = 3: The odds of Y are 3 times as high for each 
increase in X 

If eb < 1: The odds of Y are 1/eb times as low for each increase 
in X 

E.g. eb = .333: The odds of Y are 3 times as low for each 
increase in X



Coefficients

If eb = 1.xx: each 1 pt increase in X leads to a xx% increase in 
the odds of Y 

E.g. eb = 1.30: The odds of Y are 30% higher for each 
increase in X 

If eb = 0.xx: each 1pt increase in X leads to a (100-xx)% 
decrease in the odds of Y 

eb = 0.70: The odds of Y are 30% lower for each increase in 
X



Assumptions

Linearity 
In this case, we assume that there is a linear relation 
between the Xs and the logit of Y 

Independence 

No multicollinearity



Problems
Some times a logistic regression does not converge 

You will get weirdly large standard errors 

1. You have no or little data for some combinations of Xs 
This is especially problematic when Xs are nominal 

2. One or a combination of Xs are a perfect predictor of Y 
The odds ratios are infinite! 

Solution: 
Collect more data, or use a simpler model!



Logistic regression
in R



Logistic regression

Dataset “eel.dat” 
Effect of a treatment on constipation 

Variables: 
Cured: whether the patient was cured 
Intervention: whether the patient received “No Treatment” 
or the “Intervention” 
Duration: how long the patient had been constipated



Logistic regression

Relevel the Cured variable so that “Not Cured” becomes the 
baseline: 

eel$Cured <- relevel(eel$Cured, “Not Cured”) 

Relevel the Intervention variable so that “No Treatment” 
becomes the baseline: 

eel$Intervention <- relevel(eel$Intervention, “No 
Treatment”)



Plotting
Plot of the difference in cured percentage between No 
Treatment and Intervention, with bootstrapped CI: 

ggplot(eel, aes(Intervention, as.numeric(Cured == 
“Cured”))) + stat_summary(fun.y=mean, geom=“bar”, 
fill=“white”, color=“black”) + stat_summary(fun.data = 
mean_cl_boot, geom=“errorbar”, width=0.2) + ylim(0,1) 

Note: 
I’m using as.numeric(Cured == “Cured”) to turn this factor 
into a 0-1 variable…



Plotting
Cured percentage by duration, with bootstrapped CI: 

ggplot(eel, aes(eel$Duration, as.numeric(Cured == 
“Cured”))) + stat_summary(fun.y=mean, geom=“line”) + 
stat_summary(fun.data=mean_cl_boot, geom = “errorbar”, 
width=0.2) 

Split by Intervention: 
ggplot(eel, aes(eel$Duration, as.numeric(Cured == 
“Cured”), color=Intervention)) + stat_summary(fun.y = 
mean, geom=“line”) + stat_summary(fun.data = 
mean_cl_boot, geom = “errorbar”, width=0.2)



Running a model

Run the model: 
eel1 <- glm(Cured~Intervention, data=eel, family=binomial) 
summary(eel1) 

This gives us: 

- Estimates of the X variable (more on this later) 

- Deviance of the baseline model +df 

- Deviance of the current model (residual deviance) + df



Model statistics
Model chi-square: 

Likelihood ratio: ratio <- eel1$null.deviance – eel1$deviance 
Degrees of freedom: df <- eel1$df.null – eel1$df.residual 
You can also get these from anova(eel1) 
p-value: 1 - pchisq(ratio, df) 

R-square: 
Hosmer-Lemeshow: ratio / eel1$null.deviance 
Cox-Snell: Rcs <- 1-exp(-ratio/113) 
Nagelkerke: Rcs / (1-exp(-eel1$null.deviance/113))



Coefficients

                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)               -0.2877     0.2700  -1.065  0.28671    
InterventionIntervention   1.2287     0.3998   3.074  0.00212 ** 

Calculate percentages: 
With no treatment: P(Y) = 1/(1+e0.2877) = .429 
With treatment: P(Y) = 1/(1+e0.2877–1.2287) = .719



Coefficients
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)               -0.2877     0.2700  -1.065  0.28671    
InterventionIntervention   1.2287     0.3998   3.074  0.00212 ** 

The intervention has a significant effect 
The z-score may be underestimated 

What does b = 1.23 mean? 
calculate eb: exp(eel1$coefficients) 
The odds of a treated patient being cured are 3.42 higher 
than those of a patient who is not treated!



Coefficients

Do the same thing for confidence intervals: 
exp(confint(eel1)) 
Note: these are not based on the Wald statistic! 
Does not cross 1, therefore, the intervention is significant



Adding Duration
Run the model: 

eel2 <- glm(Cured~Intervention+Duration, data=eel, 
family=binomial) 

Interpret the results: summary(eel2) 
Duration does not have a significant effect 
Deviance very similar to eel1 
What is the difference? anova(eel1, eel2) 
Significance? 1–pchisq(eel1$deviance–eel2$deviance, 
eel1$df.residual–eel2$df.residual)



Diagnostics

Diagnostics are largely the same as with linear regression: 
You can inspect multicollinearity using VIF 
You can get standardized residuals, Cook’s distances, 
leverage and covariance ratios



Diagnostics

Test for linearity of continuous Xs: 

Calculate the interaction of the X with its log: 
eel$logDurationInt <- eel$Duration*log(eel$Duration) 

Add this to the model: 
eel3 <- glm(Cured~Intervention+Duration+logDurationInt, 
data=eel, family=binomial) 

If logDurationInt is significant, then there is non-linearity



Reporting

Use a table like Table 8.2 in Field 
Report not just b and SEb, but also the odds ratio (and 
maybe its confidence interval) 
Make sure to report R2 (Nagelkerke is most accepted), 
Model χ2, and p-value 

If you test multiple models, present the delta R2 and results 
of the χ2 ratio test



Poisson regression
Something that’s not in the book!



Poisson regression

Dataset “awards.dat” 
Awards won by high school students 

Variables: 
id: student id 
num_awards: number of awards won 
prog: type of high school program the student is in 
math: the student’s math score



Plotting

Make sure “General” is the baseline type of school: 
awards$prog <-relevel(awards$prog, ref=“General”) 

Histogram by academic program: 
ggplot(awards,aes(num_awards,fill=prog)) + 
geom_histogram(binwidth=0.5, position=“dodge”)



A problem…

Doesn’t look very normal! 
This is because num_awards is a count variable! 
Other examples: # of purchases, # of clicks, time*, price* 

Can we find some transformation that makes this work? 
Yes: Y = eU



Coefficients
How to interpret the b coefficients? 

b is the increase in U for each increase of X 
b is the increase in the log rate of Y for each increase in X 
eb is the ratio of rate Y for each increase in X 
eb is the rate ratio 

Why the ratio? 
b = log(ratex+1) – log(ratex) = log(ratex+1 / ratex) 
therefore, eb = ratex+1 / ratex



Let’s try an lm first
Run the model: 

alm <- lm(num_awards~prog+math, data=awards) 

R2 = 0.277 

Coefficients: 
Students in an academic program have 0.48 more awards 
than students in a general program 
For each 1pt increase in math score, the number of awards 
increases with 0.048



Let’s try an lm first

Residuals: 
awards$lmresid <- rstandard(alm) 
awards$lmresid.large <- (awards$lmresid > 1.96 |  
awards$lmresid < -1.96) 
awards[awards$lmresid.large,] 

Some residuals are huge (> 3.29)



Let’s try a glm
Run the model: 

aglm <- glm(num_awards~prog+math, data=awards, 
family=poisson) 

R-square: 
R2hl: (aglm$null.deviance–aglm$deviance) /  
aglm$null.deviance 
R2cs: 1-exp((aglm$deviance–aglm$null.deviance)/200) 
R2n: Rcs / (1-exp(-aglm$null.deviance/200)) 

Better model fit!



Let’s try a glm
Coefficients: exp(aglm$coefficients) 

Students in an academic program have 2.96 times as 
many awards than students in a general program 
For each 1pt increase in math score, the number of awards 
increases with 7.27% 

Do the same thing for confidence intervals: 
exp(confint(aglm)) 
Note: these are not based on the Wald statistic! 
Significant when they do not cross 1



Let’s try a glm

Residuals: 
awards$glmresid <- rstandard(aglm) 
awards$glmresid.large <- (awards$glmresid > 1.96 |  
awards$glmresid < -1.96) 
awards[awards$glmresid.large,] 

No huge residuals!



Ordered logistic
Also not in the book!



Ordered logistic
Dataset “consequences.dat” 

Consideration of future consequences questionnaire 

Variables: 
age, gender: participant’s age and gender 
Q3: answer to the question “I only act to satisfy immediate 
concerns, figuring the future will take care of itself.” 
answer categories: 1=extremely uncharacteristic, 
2=somewhat uncharacteristic, 3=uncertain, 4=somewhat 
characteristic, 5=extremely characteristic



A problem…

This is ordinal, not interval! 
Is the difference between “extremely uncharacteristic” and 
“somewhat uncharacteristic” the same as the difference 
between “uncertain” and “somewhat characteristic”? 

Also, not very normally distributed! 
ggplot(consequences,aes(Q3))+stat_bin(binwidth=1) 

How can we solve these problems?



Logistic regression
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Ordered logistic
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Coefficients
The model estimates intercepts for each threshold  

1|2, 2|3, 3|4, 4|5 

These thresholds are the log odds of any person having at 
least this value 

How to interpret the b coefficients? 
eb is the odds ratio for a 1pt increase in X 
e.g. if the odds ratio is 1.40, then the odds of a higher value 
by 40% if X is 1 higher



Let’s try an lm first
Run the model: 

clm <- lm(Q3~gender+age, data=consequences) 

R2 = 0.030 

Coefficients: 
Females score higher on satisfying immediate concerns 
only (not significant) 
Older individuals score lower on satisfying immediate 
concerns only (not significant)



Let’s try a polr

Run the model: 
cplm <- polr(factor(Q3)~gender+age, data=consequences, 
Hess=T) 

Run a null model: 
cplm.null <- polr(factor(Q3)~1,data=consequences, 
Hess=T)



Let’s try a polr

R-square: 
R2hl: (cplm.null$deviance–cplm$deviance) /  
cplm.null$deviance 
R2cs: 1-exp((cplm$deviance–cplm.null$deviance)/199) 
R2n: Rcs / (1-exp(-cplm.null$deviance/199)) 

The latter two suggest a better model fit!



Let’s try a polr
Coefficients: exp(cplm$coefficients) 

Females have a 70% higher likelihood to rate higher on 
satisfying immediate concerns  
For each 1 year increase in age, the likelihood to rate higher 
on satisfying immediate concerns decreases by 2.09% 

Do the same thing for confidence intervals: 
exp(confint(cplm)) 
Note: these are not based on the Wald statistic! 
Significant when they do not cross 1



Robust methods
Also not in the book!



Robust methods

Bootstrapping works the same as linear regression 

Alternative method: sandwich estimator of SE (package: 
“sandwich”) — this also works for regular lm! 

cov.aglm <- vcovHC(aglm, type="HC0") 
std.err <- sqrt(diag(cov.aglm)) 
pval <- 2 * pnorm(abs(coef(aglm)/std.err), lower.tail=F) 
LL <- coef(aglm) - 1.96 * std.err 
UL <- coef(aglm) + 1.96 * std.err



“It is the mark of a truly intelligent person  
to be moved by statistics.” 

George Bernard Shaw  
 


